Hua's lemma
From HandWiki
In mathematics, Hua's lemma,[1] named for Hua Loo-keng, is an estimate for exponential sums. It states that if P is an integral-valued polynomial of degree k, [math]\displaystyle{ \varepsilon }[/math] is a positive real number, and f a real function defined by
- [math]\displaystyle{ f(\alpha)=\sum_{x=1}^N\exp(2\pi iP(x)\alpha), }[/math]
then
- [math]\displaystyle{ \int_0^1|f(\alpha)|^\lambda d\alpha\ll_{P, \varepsilon} N^{\mu(\lambda)} }[/math],
where [math]\displaystyle{ (\lambda,\mu(\lambda)) }[/math] lies on a polygonal line with vertices
- [math]\displaystyle{ (2^\nu,2^\nu-\nu+\varepsilon),\quad\nu=1,\ldots,k. }[/math]
References
- ↑ Hua Loo-keng (1938). "On Waring's problem". Quarterly Journal of Mathematics 9 (1): 199–202. doi:10.1093/qmath/os-9.1.199.
Original source: https://en.wikipedia.org/wiki/Hua's lemma.
Read more |